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ABSTRACT

We attempt to show that the use of stochastic inverse methods allows us to precisely test
proposed models of oceanic dynamical structure. It is the integrative property of the propagating
acoustic wave that enables us to "view" ocean dynamics on scales that would be impossible with
traditional ocean instrumentation. Unfortunately, because there has been a lack of propagation
experiments conducted where the ocean dynamics are well understood, we are unable to fully
demonstrate the use of the concepts we present. Additional investigations are required.
Theoretical and numerical studies of acoustics in "numerical oceans" can provide new
information on the scales of ocean dynamics that are important for sound propagation. In turn,
this information will tell us how thoroughly we need to model ocean variability in order to
predict propagation characteristics. We show that the important scales of ocean variance are
much larger than the acoustic wavelength, when the ranges correspond to standard(
range/frequency combinations. Finally, we present some ideas for future work using acoustics to ____

verify a "new model," and discuss the temporal and spatial scales for a possible experiment.

INTRODUCTION ME

Our comprehension of wave propagation in random media has progressed to the point where
theoretical predictions of the fluctuations in sound waves that have passed through a medium
with a known autocorrelation function of the acoustic index of refraction are quite accurate. Thus,
the focus of the 'Aha Huliko'a meeting on "new" ocean dynamical and internal wave models is
not only an important step in improving our understanding of ocean processes, but could herald a
significant advance in our ability to test acoustic scattering predictions. In this paper, we have
attempted to provide an overview of the elements of ocean dynamics required by the acoustician
to make the ocean/acoustics link.

First, we present a brief review of the parameterization of ocean internal waves and finestructure
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used in acoustic propagation theory, and illustrate some of the progress being made in predicting
acoustic scattering. Second, using a specific example, we demonstrate the power of ocean
acoustic stochastic inverse methods. Note that, by stochastic inverse, we mean "imaging" the
correlation or spectral properties of the index of refraction field rather than the index of refraction
itself. We then discuss how one sets limits to the wavenumber/frequency bandwidth
requirements of ocean models in the context of acoustic scattering. Finally, we present some
ideas for a future coordinated ocean/acoustics research effort.

Ocean internal waves have a dramatic effect on sound propagation. Consider the numerical
examples of acoustic propagation shown in Figure 1. The intensity of a sound wave propagating
in the depth/range plane is shown for depths to 4000 m and for the range interval from 35 to 65
km. Figure 1(a) has a vertical sound speed profile that is range-independent. Figure 1(b), in
addition to the range-independent profile of l(a), includes random internal wave induced
fluctuations. Sharp ioci of sound channel convergences are seen in 1(a). In 1(b), the internal
wave perturbations have destroyed the foci and the sound field has broken up into ribbons of
intensity. These ribbons of sound have been directly observed and are discussed in a paper by
Uscinski and Potter (1988). We wish to predict the scattering statistics of these wave fields, and
exploit them using stochastic inverse methods. In a discussion of internal waves, two points
regarding acoustic propagation must be emphasized: (1) Because sound is the only form of
energy (other than neutrinos) that can propagate long distances in the sea, it may be possible to
monitor the ocean using inversion of information on acoustic travel time. (2) In order to study
sound propagation in the stochastic ocean, the dynamical space/time statistics must be known.

SOUND VELOCITY FLUCTUATIONS IN A STOCHASTIC OCEAN

The coordinate system we use to discuss stochastic ocean behavior is shown in Figure 2. The
two-point separation coordinates are = x I -x 2 , T1 = Y i -Y 2, ý = z I - Z 2,'T = t I - t2, and the
Fourier conjugate variables in the wavenumber/frequency domain are a,, a 2, 03, and Co.
Propagation takes place in the x-direction.

Following Uscinski (1986), the index of refraction, n, is written as the sum of a depth-dependent
deterministic component, rd, and a stochastic component, n 1.

n (X, Y, Z, t) = I + nd(z) + <A 2>% n (x, y , Z, 0). (1)

The rms index of refraction fluctuation, <g2>% is related to sound speed fluctuations, 8C (arising
from vertical displacements or velocities in the propagation direction),

<2 A c(2)
C.

where Co is the reference sound speed. We represent the two-point statistics of n 1(x ,y ,z ,t) by
the power spectrum,

S (a,,c,4,C). (3)

In general, <t 2> is a function of depth. However, if a ray traverses a narrow range in depth, <V2>
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Figure 1. The intensity of a sound wave propagating in the depth/range plane is shown for depths
to 41000 m and for the range interval from 35 to 65 kmn. The vertical sound speed is derived from
the Munk canonical profile, and propagation is calculated using a wide angle parabolic equation
(PE) code. The narrow beam source is above and near the axis of the sound channel. (a) Range-
independent case, without internal waves. One sees sharp foci due to sound channel
convergences. (b) As in (a) with internal wave variability added into the environment. The rms
internal wave displacement is 7.3 m. The foci are smeared and diffuse and ribbons of intensity
have formed.
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can be considered constant. Subsequently, we will discuss experiments carried out at Cobb
Seamount in the N.E. Pacific at a depth of 1000 m, and this is such a region. For the general case,
the depth dependence provides little or no difficulty for simulations but adds complexity to
theoretical predictions of the moments of the acoustic field. We impose the traditional internal
wave assumptions of horizontal isotropy and vertical homogeneity on the medium statistics. For
simplicity, we will assume that locally the buoyancy frequency, and hence <g 2> is depth
independent. Under these conditions, the space/time spectrum of n &(x ,z ,t) may be written,

S (a4,,o), where a 2 = a12 + a22. (4)

(We define the spectrum such that the integral over positive frequencies and wavenumbers is
N 1.) The horizontally isotropic medium correlation function is,

R (t,7,l,•,') = <g2> F S ((, J, (0))1, (5)

where F {..} indicates a Fourier transform. Note that R (0,0,0,0) = <ig2>. In the theoretical
treatment of scattering, the medium is represented by a projection of the medium correlation
function in the direction of wave propagation called the transverse correlation function (TCF).
The TCF is obtained from the correlation function by

--.ýo R (0,0,0) =_D <A~2>(6

R .L is the function we will discuss in the stochastic ocean context. The Fourier transform of R .
is written S .(13, 0o), and is called the transverse spectrum. Note that TI, the transverse horizontal
coordinate, has been suppressed (i.e. r7 = 0 ). The 11 separations will not be treated here.

The ocean processes we consider are tides, internal waves and finestructure. Finestructure is the
name given to the poorly understood portion of oceanic fluctuations in space and time that do not
possess a wave-like dispersion relationship, but give appreciable variance in BC. As a specific
example, we turn to consider the TCF used to study the acoustic propagation regime that existed
during the Mid-Ocean Acoustic Transmission Experiment (MATE).

THE MATE TCF

At the 'Aha Huliko'a Meeting, our goal is to develop a "new" stochastic ocean model. The model
we seek to replace is based on considerations of a spectrum of linear internal waves, and the
parameters and spectral dependencies of the model were obtained by fitting the model to data
sets, i.e. "data fits." Many authors have pointed out that linear internal waves alone cannot
represent observations, and attempts to model the additional variance have been stymied by
insufficient data in most experiments.

The Mid Ocean Acoustic Transmission Experiment (MATE) was designed to provide a detailed
set of both temporal and spatial oceanographic and acoustic measurements. The MATE
oceanographic setting (1000 m depth, Lat. 46°46'N., Long. 130°47'W) typifies open ocean



conditions. The exception is a strong baroclinic tide caused by the presence of several seamounts.
The oceanographic measurements during MATE were sufficient to overdetermine S (ct,Pw).
Details of the data analysis for finestructure and internal waves are found in Levine and Irish
(198 1) and Levine et al. (1986). It was possible to obtain a model of S (c,03,o)) for MATE based
upon a fit to the various projections of S. We will now show that insight into the models can also
be obtained from the MATE acoustical measurements.

The general form of the TCF is written for the case of separable vertical and time correlations as

R LpwCW( -s., dwj's(O) WI'wjs(T)

R L ,W..S() RIwFs(0,0,0) = Lpw ojs(0) •tWFS(0) )where (14)

Lp.jw,,s =R ±jw,Fs(0,0).

For internal waves, following Uscinski (1980) we write

R.v j )=2G 1 Hf Gc) (3)cos(pZ)dp ]cos(cor)dwo (15)

where G (co) and H (co) are obtained from the model presented in Levine et al. (1986); r c, arises
from the internal wave dispersion relationship,

2 -a 2 O)2 -- C l2
- - and

G. = G(o))dwo, H.= H (3) dP. (16)

coi and o). are the inertial and buoyancy frequencies, respectively. 5, is the vertical wave number
corresponding to the lowest internal wave mode. The model in this form is written as

G(co) =( p.21+ p2 p. =t( -).

With the exception of the variable spectral slope, p, this model is the same as that of Desaubies
(1976). The Desaubies and GM formulations (for GM see Munk (1981)) specify p = 3. Also, this
model uses a continuous vertical wavenumber representation rather than the modal
decomposition used by GM. The parameter, t, is the bandwidth parameter of Desaubies. Note
that the --t or 13-fo functions are separable. This fact simplifies both theory and numerical
simulation.

For finestructure, we use a form based upon that of Levine and Irish (1981). They postulated two
processes: one at low wavenumbers and low frequencies that is characterized by a slow decay
compared to the inertial period, and another process that is characterized by high wavenumbers
and frequencies, that is modulated by the internal wave field. The high wavenumber process has
a very low variance, and thus little effect on acoustic propagation. It has been discussed by Ewart



et al. (1983), and will not be mentioned here except in relation to the acoustic phase correlations.
The low frequency finestructure model has an asymptotic dependence in the spectral domain of
cC2, 3-2, and c- 2. The forms of RFS and R I.Fs are

RFs(,) exp {- [Fz- 2I { ]]"}wO, and

R FS;F$ (ý) Fs(') M.- LP •"K (ýIL,) e -1 "1.(18)R aj~(•'c =Lps FS (0) WFs (0) .

We have taken Lp;Fs = 2Lij jw = Lp jw; K 1 is the K I Bessel function.

Armed with the specific form of the TCF, we now proceed to discuss the observed acoustic
fluctuations and stochastic inverse predictions. For a more general discussion of the forward
problem, see Ewart (1986).

A PHASE STOCHASTIC INVERSE

For fifteen days during the time that MATE oceanographic measurements were made, acoustic
pulses having center frequencies near 2, 4, 8, and 13 kHz were transmitted along an 18.1 km path
near 1000 m depth. These transmissions were made between a fixed set of co-located
transmitters and fixed, spatially separated receivers (four receivers were located at the corners of
a rectangle 3 m high by 235 m in a plane transverse to the propagation path; see Ewart and
Reynolds (1984)). With a maximum angle of just over 30, the path was nearly horizontal. The
transmission path, and a single realization of the density field from source to receiver is shown in
Figure 3. We wish to obtain the time-varying spectrum of this density field by stochastic inverse
methods.

We can learn a great deal from the temporal correlations of the acoustic phase. (Aside: in a

geometric scattering environment, pulse travel time and phase are interchangeable.) The tidal,
internal wave and finestructure processes are clearly seen in the phase spectrum from the 15 day 2
kHz data set (Figure 4). The phase spectra for the other frequencies of MATE are virtually
identical out to temporal frequencies well above the buoyancy frequency, indicating the
geometric nature of the phase fluctuations. The spectrum has been expressed in <g12> units by
multiplying the measured travel times by C,, / (Lp R )½, with C, = 1480 m/s, Lp=4600 m, and
R-=18.1 km. The validity of this conversion relies upon the travel time being geometric. The
integral of the spectrum is <g2>. The diurnal, semidiurnal, and quarter-diurnal (overtone of the
semidiurnal) tidal lines are evident, as is the sharp drop-off at o, and co.. The dashed lines
indicate a fit to the deterministic tides using a simultaneous deterministic/stochastic inverse to a
model that includes a trend function, tides, finestructure and internal waves. The finestructure
and internal waves were modeled as the Fourier transforms of Equations 15 and 18, respectively.
(If the phase is geometric, the phase spectrum is related to the Fourier transform of the TCF; see
Uscinski (1986).) The tides were modeled as a sum of sine and cosine terms with independent
coefficients. This stochastic inverse method is the frequency domain equivalent to the inverse
published by Ewart (1986) where the correlation function was used. The results of the inverse can
be used to remove the deterministic functions from the time series. The 2 kHz acoustic phase
record in the time domain is shown in Figure 5, before and after removal of the trend and tide



Figure 3. A single realization of the density field along the MATE transmission path from source
to receiver. The measurements were obtained from a depth cycling run of SPURV. The potential
density shades range from 27.3 (top) to 27.5.
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Figure 4. MATE 2 kHz travel time (phase) spectrum in <g2> units per cycle per hour. The
spectral estimate was computed using the DPSS method described by Slepian (1978). Four
discrete, prolate spheroidal windows were used. The dashed lines are the tidal components
obtained by the fit described in the text; the spectral windows are evident in the tide lines.
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model. Although the determinism of the tides is assumed, the large baroclinic tide is almost
certainly time dependent over the 15 days.

To compare the travel time spectrum to the more familiar moored temperature spectrum, a
similar inversion is applied to the temperature time series. The 30 day temperature record is
windowed to the same 15 day period as the acoustic data and resampled to the same time grid.
The modeled form of the temperature spectrum is a different integral of S (cc,paw), i.e., the
mi ored spectrum:

J TS(a,4,wo)dadl. (19)

To get the moored spectrum at the ray depth in <g 2> units, we convert the temperature
fluctuations to sound speed changes and use Eq. (2). Plots of both the travel time and
temperature spectra in these units are illustrated in Figure 6. The plots include only the stochastic
components, with the tidal components removed as described above.

Three distinct regions, separated by coi and %o, are indicated. The modeled to-dependence for
each region is shown. Region I is represented by the low wavenumber/low frequency
finestructure given by Eq. (18). We see that the moored and the travel time spectra are identical
within statistical limits. These limits are large due to the short (15 day) time record. This supports
the model having no distinct dispersion relation (i.e. the moored temperature spectrum and the
travel time spectra have the same spectral slope). The 500 hour value of To used in the model
arises from the constraint of equal variance of finestructure and internal waves found in the P-
domain (Levine and Irish, 1981). In region II, we see strong evidence that the internal wave
model is correct. The differing spectral forms of corl- for the moored spectrum and 0-2-5 for the
travel time spectrum supports the effect of the internal wave dispersion relation (i.e. the travel
time spectrum differs in spectral slope by -1 from the temperature spectrum). Also, the spectral
cutoffs, the value of p, and the normalization of the model are supported. In region 111, the W-3

spectral slope of the moored spectrum and the Co64 spectral slope of the travel time spectrum
provides strong evidence that the high wavenumber finestructure is advected by internal waves
(hence the effect of the internal wave dispersion relation).

We have attempted to show both the complexity of the ocean TCF as well as the large diversity
of oceanographic data needed to confirm ocean spectral models. The ability of the acoustic field
to give us an integral constraint on the model through phase correlations must be emphasized. It
should also be emphasized that the inversion was done individually on each data set. A combined
inversion is also possible (and is under proposed study). The combined inversion would impose,
in a consistent manner, the relationships between the oceanographic and acoustic data sets
exhibited in Figure 6. A future combined oceanographic/acoustic experiment would exploit these
same relationships in a test of the new dynamical internal wave model.

AATE ACOUSTIC FIELD MEASUREMENTS

MATE demonstrated that the acoustic scattering conditions can be determined when extensive
environmental measurements are made simultaneously with acoustic field measurements.
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Although MATE provided a long series of temporal acoustic measurements, only a few spatially
separated receivers were used. To augment our understanding of the spatial characteristics of the
scattered field, AATE (the AIWEX Acoustic Transmission Experiment) was designed to make
both vertical and temporal measurements of the acoustic field. The transmission experiment
(conducted under multi-year ice in the central Beaufort Sea) consisted of four co-located
transmitters (2,4,8,16 kHz) suspended beneath the ice at 153 m depth. These were positioned 6.43
kIn from a depth cycling array of 3 receivers, separated by 51 m (the depth cycle was 51 m
providing a 153 m vertical aperture). Simultaneous environmental measurements were made by
several investigators from several institutions. A study of AIWEX moored data by Levine (1990)
has resulted in an internal wave model.



Figure 7 displays the travel time and log-intensity spectra measured over two time periods during
AATE. (A strong wind event occurred between the two time periods, making interpretation of the
travel time measurements across the event difficult, if not impossible.) The spectra in Figure 7
may be compared to those taken during MATE. Predictions from the weak-scattering theory of
Desaubies (1978) are shown with the observations from before the wind event. The acoustic
fluctuations are significantly less energetic ( = 1/50th ) than those expected under canonical GM,
open ocean conditions (the GM-parameters have been adjusted for the AIWEX buoyancy
frequency profile). In addition, the spectral slope of the travel time spectra is a power less than
the prediction. These results are similar to those obtained from measurements made at the
AIWEX environmental moorings (Levine, 1990). Note that the travel time spectra observed after
the wind event display a peak at the local inertial frequency. This feature is also seen in the two
dimensional 2 kHz travel time spectra shown in Figure 8. The presence of the inertial peak after
:ne wind event shows a serious lack of stationarity. This complicates modeling, but also indicates
that additional interesting oceanographic processes were present after the wind event. Sorting out
the mechanisms requires close examination of the environmental data taken during these two
time periods.

A goal was to invert the AATE acoustic phase measurements and obtain a prediction for the
internal wave/finestructure spectrum, analogous to what was done with the MATE results.
Though the AATE travel time measurements were made to accuracies of a few microseconds out
of a total travel time of 4 seconds, the travel times are contaminated by mooring motions of less
than 1 cm. This contamination makes their use for an inversion problematic. However, when the
scattering is sufficiently weak, stochastic inverse predictions are possible from the amplitude
measurements. Under the conditions of AATE, we should be able to obtain the environmental
field from inversion of the log-amplitude statistics. This analysis remains to be completed. The
value of the spatial inversion is implied by the predictions shown in Figure 9. These are the
wavenumber spectral filters of acoustic phase and log-amplitude obtained from the Rytov
predictions of Desaubies (1978). The predicted phase and log-amplitude spectra are obtained by
multiplying the medium spectrum, S (P,ca), by the appropriate filter function.

Note that for more traditional open ocean scattering conditions, the acoustic intensity probably
cannot be used as an inversion tool. It is beyond the scope of this paper to discuss comparisons
between theory and measured intensity statistics. But for propagation ranges more than a few
kilometers in most of the ocean, a multiple-scattering theory is required. When the field has been
multiply scattered, the intensity statistics can no longer be understood as the action of a linear
filter, like that shown in Figure 9. Fortunately though, the multiple scattering effect on the
acoustic phase is small enough that it can be used as an inversion tool apparently even for long
range cases. Although the AATE measurements provided measurements both in the vertical and
in time, the weak acoustic phase fluctuations were masked by small mooring motions. Because
virtually no other space/time measurements of the acoustic field have been made under conditions
where the scattering field is known, further studies of the stochastic inverse methodology
requires, at least for the near future, taking a numerical approach. Our current work presents
some examples relevant to the oceanographic community and demonstrates the validity of this
approach.
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NUMERICAL SIMULATIONS AND THEORY

Much has been learned about acoustic fluctuations from numerical simulations. An example is its
use in testing acoustic scattering theory. The technique of using parabolic equation propagation
codes to test moment theoretical predictions was initiated by Macaskill and Ewart (1984). Since
then, their technique has been modified to include a point source initial condition and other
important physics. The moment theories are full range theories, and not asymptotic at short or
long range; thus, they are important to ocean acoustics.

Figure 10 shows a contour plot of the normalized intensity variance (traditionally called the
scintillation index) as a function of acoustic frequency and range (from Ewart, 1989). The input
ocean model used for the TCF is R .(J) = (1 + I ý I /1)exp(- I C IL,) which is asymptotically 0-4

in the vertical wavenumb-..r domain. The normalization is typical of mid-ocean internal waves
with <g.2> = 3.0-10-, LP = 4600 m, and L, = 150 m. For frequencies above 1 kHz, the
scintillation index rises to a maximum at a location called the focus of the medium, and then
decays to a value of one. The noise cutoff, plotted as a heavy solid line, demonstrates that for
frequencies above 1 kHz, reaching long ranges will be difficult in the ocean.

For our purposes, it is important to note that Uscinski's full range theory for plane wave
propagation is in excellent agreement with the plotted scintillation indices, and with the vertical
wavenumber decomposition of the intensity variance. Similar studies of the point source initial
condition display a scintillation peak that is higher. These features are also obtained with theory.
Uscinski (1989) has demonstrated that when using parabolic equation propagation in polar
coordinates (the natural coordinates for a point source) the predictions from moment theory and
results of the simulations agree to within statistics. For that work a Gaussian TCF was used, and
more work remains to be done for power law media such as the case with internal waves. But the
overall agreement demonstrates that the moment theory solutions are robust over diverse
scattering conditions and ranges. The underlying point is that, for a given medium transverse
correlation function, the numerical experiments have shown that available theories of stochastic
wave propagation can predict the second and fourth moments of the acoustic field. Our ability to
predict acoustic fluctuation statistics under true oce2 i conditions then depends upon the validity
of the TCF, and hence the importance to acoustics of the new internal wave modeling effort.

WHAT SCALES ARE IMPORTANT FOR ACOUSTICS?

Our last example is from numerical evaluation of theory. The example comes from asking the
question, "If an oceanographer made vertical measurements of sound speed fluctuations, what
scales in those measurements are important in predicting acoustic volume scattering?". This
question has been addressed in recent work by Ewart and Ballard (1990). They attempted to
establish the small scale limit for oceanographic measurements required to predict the
scintillation index, given a known TCF. Because ocean scattering is characterized by weak but
multiple scattering, all scales of the medium can theoretically contribute to all scales in the
prediction of the acoustic intensity. Using Uscinski's theory to predict the intensity fluctuations
with depth, the following computation was carried out. Using a TCF derived from the internal
wave model presented in Levine and Irish (1981), and a specific range and scattering strength, a
prediction for the scintillation index was obtained for the condition of an inner scale wavenumber

cut-off in the transverse spectrum of 0.1 cpm (I 0m). Denote this value of the scintillation index
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as SI,. The cut-off wavenumber was then decreased until a scintillation index equal to .9 or 1.1
of Sl, was reached. The two regions correspond to before and after the medium focus. This
process was then repeated for a wide range of scattering strengths and ranges. A contour plot of
these 90% and 110% cut-off wavenumbers as functions of acoustic frequency and range is shown
in Figure 11. (This parameterization requires selecting specific internal wave model parameters,
the ones listed above were used.) The bold line shown corresponds to the noise limit for a 200
dBlPa/m source; the light solid line denotes the multiple scattering boundary. The result is that
for ranges greater than a few kilometers and frequencies less than 10 kHz, small vertical scales
contribute little to the scintillation index. Note also that the smaller scales become less important
as the range (and hence cumulative scattering) increases.

In the numerical simulations, the medium is treated as consisting of 8-correlated phase changing
screens that are statistically described by the TCF. Tý.. question, "Is it theoretically permissible to
represent the ocean statistics in this manner'" has been studied in additional research conducted
by Ewart and Kaczkowski (1990). They have studied medium models that are correlated in range,
versus those described by 8-correlated screens (i.e. a Markov process). Their research shows that
little difference exists in the acoustic field moments for the two descriptions. This result, when
considered with the observations presented in the previous paragraph on the effects of changing
the inner scale, allows us to simplify oceanographic modeling for simulating acoustics. This
simplification is incorporated into our discussion of dynamical modeling in the Summary section.

SUMMARY AND WHAT'S NEXT?

We have provided a brief tutorial on the connectivity between ocean stochastic modeling and
predictions of the moments of an acoustic wave propagating through such an ocean. In this
section we include a brief summary of our main points and mention desirable future directions for
research.

Summary

- Internal wave models (new and used), are vital for predicting the statistics of acoustic
propagation.

• Stochastic inverse methodology provides a tight check on proposed new models, when
sufficiently careful space/time acoustic observations are made simultaneously with
space/time oceanographic observations. The use of both oceanographic and acoustic
measurements in combination must be emphasized.

* The missing element in research is the availability of acoustic observations in depth/time,
where the medium correlation function is known.

• Numerical experiments, where dynamical models are used to define the index of
refraction field, may help us to understand stochastic inverse methods, BUT,

- Field experiments with sufficient space/time measurement bandwidth must be coupled
with acoustic measurements ----

- We must measure the complex acoustic field E (z, t) for several frequencies and
ranges.
- When a "new model" is available, a detailed experiment can be designed with

numerical modeling.
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3-D Dynamical Modeling

We have stated emphatically that the lack of high quality data prevents us from testing the
stochastic inverse methodology on the range of space/time scales that are relevant to the
modeling goals of the 'Aha Huliko'a meeting. Using the insight we have gained from studying
modeling limits, we are collaborating with Kraig Winters and Eric D'Asaro (See their
contributions in this proceedings) to test the capabilities we have developed in theoretical
predictions and stochastic inverse methodology with their dynamic simulation modeling. The
proposed model, to be run on our Stardent Mini-Supercomputer, will have horizontal scales of 50
by 20 km in x and y respectively (x is the propagation direction) and 2000 m in the vertical. Its
corresponding resolution will be 20 m in the vertical and 333 m in the horizontal with a grid of
1283/4 cells. The w xlel will be initialized in several ways and run with time steps spanning many
inertial periods. The resulting density fields will be the input to our PE propagation codes and
will provide simulated realizations of the acoustic field. This type of modeling is very important.
because it allows us to demonstrate the necessity (or lack thereof) of including dynamics in
acoustic modeling.

Realizations of 3-D plus time density fields can also be produced from any proposed model, and
used via Monte Carlo methods to test the stochastic inverse concepts discussed here. In verifying
acoustic scattering predictions, one can test the robustness of the predictions to relaxed
assumptions in the model, e.g., fully random phase versus dynamically consistent, and correlated
versus Markov medium representations. All of these issues are relevant to our computer-limited
ability to model acoustic propagation.

A Proposed Experiment

Eric D'Asaro has proposed an internal wave experiment designed to test many of the existing
ideas on the cascade of energy from low internal wave modes to higher modes. The experiment
would be conducted far from boundaries and sources of low mode internal wave energy. For
example an area south of a storm region could be used to study how a changing flux of low mode
internal wave energy "pumps" a local internal wave space/time spectrum. An extensive suite of
dynamic and scalar oceanographic measurements would be made over a long period of time in
order to develop an understanding of the linear and nonlinear processes involved. We would
propose that an acoustics experiment capable of measuring the complex field at many spatially
separated points be made an integral part of the overall measurement program. Many of the ideas
we have presented here could be implemented. By sensing such a large volume of the
experimental region, the acoustic measurements we envision would provide a severe constraint
on possible space/time models.
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